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ABSTRACT 

Let G be a finite group admitting an automorphism c~ with m fixed points. 

Suppose every subgroup of G is r-generated. It is shown that (I) G has 

a characteristic soluble subgroup H whose index is bounded in terms of 

m and r, and (2) if the orders of ~ and G are coprime, then the derived 

length of H is also bounded in terms of m and r. 

1. I n t r o d u c t i o n  

This paper is devoted to the study of certain finite groups admitting automor- 

phisms with few fixed points. Some of the group-theoretic problems will be 

reduced to Lie-theoretic ones, which in turn may be tackled using "linear" meth- 

ods. There is extensive literature on the subject, originating with Higman's and 

Thompson's fundamental papers [H], [Th]. The reader is referred to Hartley's 

survey paper [H1] and its reference list. See also [Kh],[M],[Sh]. In contrast with 

classical results, which deal with automorphisms c~ of a given (often prime) order, 

we shall try (not always successfully) to avoid any reference to the order of 

in our results. Instead, the rank of the finite group G - -  or the Lie ring L - -  

will play a key role. Here the rank of G (denoted by rk(G)) is defined to be the 

minimal integer r such that every subgroup of G is r-generated, and the rank of 

L is the rank of its additive group. Our aim is to show that, if a finite group G of 
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bounded rank admits an automoq)hisnl with boundedly many fixed points, then 

it possesses a soluble subgroup H whose index and derived length are bounded. 

An automorphism is called f ixed -po in t - f r ee  if it does not have a non-trivial 

fixed point. An automorphism of a Lie ring of finite rank is called s e m i s i m p l e  if 

it can be represented by a diagonal matrix (over a suitable integral extension of 

the integers Z). The derived length of a soluble group (or Lie ring) G is denoted 

by dl(G). 

PROPOSITION: Let L be a Lie ring of finite rank a&nitting a semisiraple fixed- 

point-free automorphism a with d distinct eigenvalues. Then L is soluble of  

derived length at most 2 a-1 - 1. hi particular dl( L ) < 2 r-1 - -  1, where r = rk(L).  

This result is closely related to Kreknin's Theorem [Kr], showing that a Lie 

ring with a fixed-point-free automorplfism of order n is soluble of derived length 

at most 2" - 2. 

Our main result (part of which applies to the above Proposition) deals with 

finite groups of bounded rank admitting an automorphism with few fixed points. 

Throughout this paper we say that a certain invariant is m, n . . . -bounded  if it is 

bounded above by some function of m, n , . . . .  

THEOREM: Let G be a finite group of rank r a&nitting an automorphism a with 

rn fixed points. Then G has a characteristic soluble subgroup H whose index is 

re, r-bounded. Moreover, if(l l, ICl) = 1 then the derived length of H is also 

rn, r-bounded. 

It has been shown in [Sh, Corollary D] that the derived length of a finite soluble 

group of rank r admitting an automorphism a of order n with m fixed points 

is n, m, r-bounded. We see that,  in a coprime situation, our Theorem provides 

a bound which is independent of n. I have not been able to decide whether the 

coprimeness assumption in the Theorem is really essential. 

The proof of the above result applies the classification of finite simple groups, 

the theory of powerful p-groups [LM], as well as some Lie-theoretic arguments. 

There are two ingredients which deserve particular attention. The first is a recent 

theorem of Hartley [H2], generalizing the classical Braner-Fowler Theorem. It 

states that  there are only finitely many simple groups admitting an automorphism 

a of a given order with a given number of fixed points. The second is the use 

of a Lie ring, constructed from certain p-groups P,  which may be regarded as a 

finite analog of Lazard's Lie algebra of a p-adic Lie group [L]. As shown in [Sh], 
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this Lie ring reflects the structure of P more closely than the graded Lie ring 

used by Higman and others, and may therefore give rise to some new reductions 

of group-theoretic problems to Lie-theoretic ones. I am grateful to Brian Hartley 

for stimulating conversations and for his proof of Lemma 3.1 below. 

Some words on the structure of this paper. 

The Proposition is proved in section 2. Section 3 deals with solubility results, 

and contains the proof of the first part of the Theorem. In section 4 we briefly 

discuss the construction of a "p-adic" Lie ring associated with a "uniform" p- 

group, and apply it in the proof of the second part of the Theorem, starting with 

the fixed-point-free case. The proof is then completed in section 5. 

Notation is standard. The derived series of a group G is denoted by {G/(i)}i>0 

and G' stands for the commutator subgroup G (1). A similar notation will be used 

for Lie rings. Lie products of length greater than 2 will be interpreted using the 

left-normed convention. $(G) denotes the Frattini subgroup of a group G, and 

G p stands for the subgroup generated by all pth powers in G. A simple group 

will be understood to be non-abelian. Ix] aa~(1 [x] denote the lower and upper 

integral parts of a real number x. 

2. Lie  r ing  a u t o m o r p h i s m s  

Deaemition 2.1: Let S be a set of complex numbers. A linear ordering < on S 

will be called g o o d  if there are no x, Y E S such that xy  E S and x < xy  < Y. 

LEMMA 2.2: The complex nmnbers a&nit a good ordering. 

Proof: We first claim that the unit circle S ~ = {z E C : l z l  = 1} admits a good 

ordering. Indeed, given z = e °i, z' = e 0'i (0 _</9,/9' < 271"), define z < z' if 9 < 9'. 

Then zz '  > z, z' if/9 + 8' < 2zr, and zz '  < z, z' otherwise, so < is a good ordering. 

Now, it is easy to see that the multiplicative group C* is isomorphic to S 1 

(as an abstract group). Hence C* - -  and therefore C as well - -  admits a good 

ordering. | 

Remark: Most groups do not admit a good ordering. A typical example is the 

elementary abelian p-group Cp × Cp. However, if G is an abelian group whose 

cardinality is at most the continuum and whose torsion part is locally cyclic, then 

G admits a good ordering. This is because it can be embedded in C*. 
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Det~nition 2.3: Let S be a finite set of complex nunlbers. We say that a Lie ring 

L is S - g r a d e d  if its additive group can be decomposed as L = @x~s L~, and, 

for x, y E S we have [L~, Ly] _< L~y. It is understood that L~ = 0 whenever x is 

not in S. 

The following result is proved using a slight modification of Kreknin's method 

[Kr]. 

PROPOSITION 2.4: Let  L be em S-graded Lie ring, where S is a finite set of 

compJex numbers  not  including 1. Tben L is soluble. Moreover, i f  IS] = d then 

dl (L)  < 2 d-~ - 1. 

Proof: Choose a good ordering on S, mad label the elements of S such that 
d 

xl < x2 < . . .  < Zd. Then L = ~ i=1  L,~. For simplicity, define Li = Lxl. For 

1 < k < d let/ark be the subring generated by Lk+l, . . . ,  Ld. Note that Hd = O. 

Claim: 

( I )  L (2h-') n Lk C_ Hk ( i  < k < d). 
(2) _c Hk (1 < k < d). 

We prove (1) and (2) simultaneously, by induction on k. Suppose k = 1. We 

have to show that L' C HI.  It suffices to prove that ILl, Li] C__ H1 for all i, j .  

This is obvious if x i x  I # x l ,  so suppose x ix  i = x l .  Since 1 ~ S it follows that 

xi,  x i # x l ,  so that i , j  > 2, and [Li, Lj] C Hi .  

Suppose now that k > 1. The induction hypothesis for (2) yields 

L (2~-'-1) C_ Hk-i  

so that  
k - - I  

L (2 ) C (Hk-I) ' .  

To prove (1) it therefore suffices to show that 

(Hk-1)' rl Lk C_ Hk. 

Let a, b E Hk-1 be honlogeneous elements with h := [a, b] E L k .  We have to 

show that h E Hk. We may assume that b = [bl, . . . ,  bin] where m > l a n d  

bi E L m for some nl ,  . . . ,  nm > k. Then h is a linear combination of elements of 

the form [a, b,(1), . . . ,  b~(,,,)] for pemmtations ~r E S y m ( m ) .  It therefore suffices 

to show that all these elements lie in Hk. Clearly, we may azsume that a is the 
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identity permutation, and consider the element g := [a, b~, . . . ,  bin] = [c, bm] 

where c := [a, bl, . . . .  bin-i]. Suppose c E L i  and bm E Lj (so that j = am). 

Recall that h E Lk, so that g E L k  as well. Thus xix I = xk. We know that 

j > k, and since xi # 1 we have j > k. It is also clear that i # k. We claim that 

i > k. For otherwise i < k, so xi < xt, = xixj  < x.i, contradicting the assumption 

that < is a good ordering. We conclude that g = [c, bin] E [Li, Lj] C Hi,. This 

proves (1). 

To prove (2), consider M := L (2k-~) as an S-graded Lie ring. Apply (2) for M 

with k - 1 to obtain 

M (2k-a-l) C ( M f ' l L k , . . . , M f ' l L d )  C_ ( M N L k , H k ) .  

Now, condition (1) for L and k yields M fl Lt, _C Hk. Therefore 

M (2k-t-l) C Hk. 

Since L (2 ' - i )  = M (2.-~-1) the result follows. | 

Now, given a fixed-point-free senlisimple automorphism of a Lie ring L, let 

z l , . . . ,  zd be its eigenvalues in a suitable integral extension R of Z. Then zi # 1 

for all i. We see that L ®z R is S-graded where S = { x l , . . .  ,xa}, which may 

be considered as a subset of C. Proposition 2.4 may therefore be applied. It 

follows that L(C_ L ® R) is soluble of derived length < 2 d-1 - 1. This proves the 

Proposition. 

3. The existence o f  a la rge  soluble  s u b g r o u p  

The following result, whose proof is due to Brian Hartley, is rather useful for our 

purpose. 

LEMblA 3.1: Let S = L (n ,F)  be a simple group of Lie type, where F = Fpb and 

n is the Lie rank. Suppose S admits an automorphism t~ with m tixed points. 

Then the order of S is b; m, n-bounded. 

Proof." By the structure of the automorphism group of S (see, e.g., [C]) we see 

that the order of Out(S) is b, n-bounded. In particular a e E S (which we identify 

with Inn(S) )  for some e which is b, n-bounded. It follows that (o~') C_ Cs(ct), so 

~,,a = 1 (as ICs(~)l = m). Hence the order of a is b, m, n-bounded. By a recent 

result of Hartley [H2, Theorem A ~] there is a bound to the order of a simple 
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group admitting an automorplfism of a given order with a given number of fixed 

points. It therefore follows that the order of G is b, m, n-bounded, l 

We can now prove: 

PROPOSITION 3.2: Let G be a ~nite group of rank r admitt ing an automorphism 

a with m f~xed points. Then O has a soluble characteristic subgroup H whose 

index is m, v-bounded. 

Proof." Let M be a characteristic section of G which is characteristically simple. 

Suppose M is non-abelian. Then it is the direct product of isomorphic simple 

groups Si (1 < i < k). Since v k ( a )  = v we have k _~ r. Now, the automorphism 

a acts on the section M with at most m fixed points; this follows from [HB, 

p.361]. Let i _> 1 be the minimal integer such that S~' = $1. Then K := 
o / i - I  S1 × S~ × - . .  × S 1 is an a-invariant subgroup of M. Note that,  if s E Cs, (ai),  

• . . S o t  i - I  then s s  ~ E Cg(a). Hence I C s , ( ~ q l  < IC;~(~)I --- m.  We conc lude  

that $1 is a simple group of rank at most v admitting an automorphism with 

at most m fixed points. Applying the classification we see that,  either ]$11 is 

bounded, or $1 is of Lie type, say $1 = L(n, F )  where F = Fpb for some b. Since 

rk(S~) < r we easily see that b and n are v-bounded. But IS, I is b, m, n-bounded, 

by Lemma 3.1. We conclude that,  in either case, IS1] is m, v-bounded• It follows 

that IMI is m, r-bounded, for any non-abelian characteristic section M which is 

characteristically simple. 

Given such a section M, consider Ca(M).  Then G / C a ( M )  c_ Au t (M) ,  so the 

index of C a (M)  is m, v-bounded. Since G is v-generated, its number of subgroups 

of index < i is r,/-bounded• Therefore the nmnber of possibilities for Ca (M)  

is m, v-bounded. Let H := f3Ca(M) where M ranges over all (characteristic) 

non-abelian characteristically simple sections of G. The above discussion shows 

that (G : H)  is m, v-bounded. Finally, since every characteristic section of H 

which is characteristically simple is abelian, H must be soluble. II 

This proves the first part of the Theorem. 

4.  A b o u n d  o n  t h e  d e r i v e d  l e n g t h :  t h e  f i x e d - p o i n t - f r e e  c a s e  

Let G be a finite soluble grou 1) of rank r admitting an automorphism a with 

m fixed points. Our goal is to show that the derived length of G is bounded, 

provided that the order of t~ is coprime to the order of O. In this section we focus 

on the case m -- 1, leaving the general case to the next section. 
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The main idea behind the proof is a reduction to a Lie-theoretic problem, 

which is then solved by applying the Proposition. The reduction is based on a 

construction of a Lie ring from a certain type of p-group, which is called u n i f o r m .  

A detailed account of this process is given in [Sh, Sec. 3] (see also [DDMS, 

Chapter 4]). Here we briefly discuss the major points, for the benefit of the 

reader. 

Let p be a fixed prime. For simplicity we assume that p is odd. 

Definition 4.1: 

(1) A finite p-group P is called power fu l  if P/PP is abelian. 

(2) A powerful p-group G is called u n i f o r m  if the order of pp~/pp~+l does not 

depend on i, as long as P v~ # 1. 

For an extensive study of powerful p-groups mad their important  role in the 

theory of p-adic Lie groups, see Chapters 2-4 of the recent book [DDMS]. 

Now let P be a uniform p-group of rank r and exponent p~, and let i < e/4. 
ep2i Then Li := PP~/PP~ and Mi := /pp3~ are homocyclic abelian groups of rank 

r. The map x ~-* z p' induces an isomorphism q : Li ~ Mi. The commutator  

operation x, y ~-* x -1 y-1 xy induces a well-defined bilinear map c : Li x Li ~ Mi. 

Pulling the values of this map back to Li we obtain a bilinear map [ , ] : 

Li × Li , Li defined by [x,y] = q- l (c(x ,y) ) .  This product, together with the 

natural  additive structure, turns Li into a Lie ring. 

Definition 4.2: A Lie ring L will be called u n i f o r m  if it is a finitely generated 

free Z/piZ-module for some i, and L/pL is a commutative Lie algebra. 

The Lie ring Li just constructed turns out to be uniform. Its rank coincides 

with that of P.  It is clear that any automorplfism a of P induces a Lie automor- 

phism on Li in such a way that ICL,(~)[ < ICp(a)l. Not obvious, but still true, 

is the following fact. 

PROPOSITION 4.3 ([Sh, Theorem 3.6]): Let P be a uniform p-group, and suppose 

that the derived length of each of the Lie rings Li associated with P is at most 

k. Then the derived Iength of P is at most 2k + 1. 

Now, let P and Li be a.s in 4.3, mad let a be a p'-automorphism of P which 

is fixed-point-free. Since Li is a Z/piZ-nmdule and the order of a is prime to 

p, we see that a induces on Li a semisimple automorphism which is fixed-point- 

free. Setting rk(P)  = rk(Li)  = r and applying the Proposition, we obtain 
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dl(Li) ~ 2 r - I  - 1. But  this holds for every Lie ring Li associated with P .  

Apply ing  Propos i t ion  4.3 we obtain:  

LEMMA 4.4:  Let  P be a uniform p-group of rank r admitting a flxed-point-free 

p~-automorphism. Then dl(P) < 2 r - 1. 

Now, a powerful p-group P of ra:lk r and exponent  pe splits into k < r uni form 

sections of the fo rm P v '~ /Pv '2 , . . . ,P  v'~/Pp'k+'(O = il < . . .  < ik+l = e) of  

ranks  r -- r~ > . . .  > rk respectively (see [Sh, Sec. 2] for details).  If  P admi t s  

a f ixed-point-free p l -au tomorphism,  then, applying 4.4 for each of these uni form 

sections, we see tha t  

dl(P) <_ 2 ~' - 1 + . . .  + 2 ~ - 1 

< 2 r -  1 + 2  r - I  - 1 + - . .  + 21 - 1 = 2 r+l - r - 2 .  

However,  since powerful p-groups of rank 2 are metacyclic,  we m a y  replace the  two 

last  s u m m a n d s  (corresponding to unifolan sections of ranks  2 and  1 respectively)  

by 2. We have  proved: 

LEMMA 4.5: Let P be a powe~ul p-group of  r ank  r > 1 admitting a fixed-point- 

free p~-automorph/sm.  Then dl(P) < 2 r+l - r - 4. 

To pass f rom the powerful case to the case of an a rb i t ra ry  p-group,  an impor t an t  

result  of  Lubo tzky  and M m m  should be  applied [LM, Theo rem 1.13]. It  shows 

tha t  every p-group P of rank 7' has a characterist ic  powerful subgroup  Q such 

tha t  ( P :  Q) _< p~Og,  ~1 and  dl(P/Q) < [log 2 r] .  This  gives rise to: 

PROPOSITION 4.6:  The  derived Iength of  a p-group of rank r > 1 admitting a 

fixed-point-free p*-automorphism cannot exceed 2 r+l - r - 4 + [log 2 r ] .  

Now, let G be a finite group of rank r, admi t t ing  a f ixed-point-free au tomor -  

ph i sm a .  Then  G is soluble (this is a well-known consequence of the classifica- 

tion). Suppose  fur ther  tha t  ([a], IGI) = 1. Fix p dividing the order  of G, and  set 

P := Op,v(G)/Ov,(G). 

Then  P is a p-group,  say, of rmlk d _< r, and by the H a l l - H i g m a n  theory  

G/ Of n ( G  ) m a y  be identified with a complete ly  reducible subgroup  of 

Aut (P /¢ (P) )  = GL(d,p). By a result  of M.F. Newman  IN], it follows tha t  

dl(G/On,p(G)) _< 5 logg(d/8 ) + 8 _< 5 logg(r /8  ) + 8. By Propos i t ion  4.6, dl(P)) <_ 

2 r+l - r - 4 -t- ~log2 r ] .  Hence the derived length of G/Op(G) is at  mos t  2 r+l - 
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r - 4 + [log 2 r] + 5 logg(r/8 ) + 8. Since p is arbitrary, and NpOp(G) = 1 we have 

established the following result. 

THEOREM 4.7: Let G be a finite group of rank r admitting a fixed-point-free 

automorphism whose order is coprime to [G[. Then dl(G) <_ 2 r+l - r + [log 2 r] + 

51og9(r/8 ) + 4. 

5. A b o u n d  on  t h e  d e r i v e d  leng th :  t h e  g e n e ra l  case 

Let L be a uniform Lie ring of rank r and additive exponent pi, and let A be 

an abelian p'-group of automorphisnls of L having exactly m fixed points. We 

assume that m > 1. Then the additive group of L may be written as a direct 

product L = CL(A) x [L, A] (see [G, Theorem 5.2.3]). This implies that CL(A) 

has order at least pi, so that pi _< m. 

Now, an easy computation based on the fact that L/pL is commutative (see 

[$h,4.2]) shows that dl(L) < [log2(i + 1)]. We therefore obtain: 

LEMMA 5.1: Let L be a uniform Lie ring admitting an abelian p~-group of auto- 

morphisms A with m > 1 fixed points. Then dl(P) <_ [log2([log p rn] + 1)]. 

Now, let P be a uniform p-group of rank r admitting a p'-automorphism a 

with at most m fixed points, and let Li be a (uniform) Lie ring associated with 

P.  The combination of the Proposition and Lemma 5.1 yields 

dl(Li) <_ max{2"- '  - 1, [log2([log p rn])] }. 

Applying 4.3 we obtain 

LEMMA 5.2: Let P be a uniform p-group of rank r admitting a p'-automorphism 

with at most m fixed points. Then dl(P) <_ max { 2 r - 1, 2 flog2 ([log, m] + 1)] + 1}. 

Keeping track of the argmnents applied in the preceding section we readily 

h a v e :  

PROPOSITION 5.3: Let P be a p-group of rank r admitting a p~-automorpldsm 

with at most m fixed points. Then the derived length of P is m, r-bounded. 

We leave the computation of the concrete bound obtained to the reader. As 

in the proof of 4.7, this gives rise to: 
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THEOREM 5.4: Let G be a finite soluble group of rank r admitting an automor- 

phism a with m tlxed points. Suppose that the order o[ a is coprime to [G[. 

Then the derived length of G is ,', ,n-bounded. 

This result completes the proof of the Theorem. 
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